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Line mixing effects have been calculated in the ν1 parallel band of self-broadened NH3. The
theoretical approach is an extension of a semi-classical model to symmetric-top molecules with
inversion symmetry developed in the companion paper [Q. Ma and C. Boulet, J. Chem. Phys. 144,
224303 (2016)]. This model takes into account line coupling effects and hence enables the calculation
of the entire relaxation matrix. A detailed analysis of the various coupling mechanisms is carried out
for Q and R inversion doublets. The model has been applied to the calculation of the shape of the
Q branch and of some R manifolds for which an obvious signature of line mixing effects has been
experimentally demonstrated. Comparisons with measurements show that the present formalism leads
to an accurate prediction of the available experimental line shapes. Discrepancies between the exper-
imental and theoretical sets of first order mixing parameters are discussed as well as some extensions
of both theory and experiment. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952996]

I. INTRODUCTION

In the companion paper1 (hereafter referred to as Paper I),
we have shown that line coupling, i.e., the non diagonality of
S2,middle in the linespace of vibrational bands of NH3 can lead
to a very substantial decrease of the self-broadened widths.
This is mainly the consequence of the coupling, due to the
dominant dipole-dipole interaction, of the two components
of each transition split by the inversion tunneling. The j and
k dependences of the line coupling were carefully analyzed,
leading to a deep understanding of the j and k dependences
of the widths, in very good agreement with the experimental
data.

Meanwhile, as is known from previous works,2,3 the same
formalism enables to build the entire relaxation matrix and not
only its diagonal elements. This gives us an opportunity to see
if the model can explain the obvious and complex signature
of line mixing (LM in the following) measured by Pine and
Markov4 in the ν1 band of NH3 for pressures around 100 Torr.
This process was pointed out four decades ago,5 and since
then line mixing effects in NH3 have been the subject of both
experimental (see Refs. 4, 6, and 7 and those cited therein)
and theoretical studies.8–11

For complicated molecules like NH3, with a few
exceptions,10–12 most of the previous models8,9 were based
on the infinite order sudden (IOS) approach developed by
Green, corrected in order to verify the detailed balance and
to account for the spacing of the energy levels. Note that the
so-called energy corrected sudden (ECS) approach neglects
the internal degrees of the perturber, which is considered as
an atom and that it requires, in most cases, an adjustment
of various basis parameters (basis dynamical factors, scaling
length, . . . ). In contrast, the refined Robert and Bonamy (RB)
formalism presented in Paper I1 enables the calculation of

the entire relaxation matrix only starting from the knowledge
of the intermolecular potential. Indeed, once all the matrix
elements of exp(−iS1 − S2) within the line space are available,
it is easy to calculate the relaxation matrix elements from

W̃ f ′i′,fi ≡ W̃n,l =
nbν̄

2πc

+∞
rc,min

2π(b db
drc

)drc

×

δi′iδ f ′f− ≪ f ′i′ ���e

−iS1(rc)−S2(rc)��� f i ≫

, (1)

where all symbols have been defined in Paper I.1

II. THE ABSORPTION COEFFICIENT

For the experimental conditions of Ref. 4, the first order
approximation (in pressure) for the absorption coefficient
α (ω) derived by Rosenkranz13 is fully justified, so that one
can write14

α (ω) =


lines l

Sl
π

Γl + Yl(ω − ωl − ∆l)
Γ2
l
+ (ω − ωl − ∆l)2 . (2)

In this equation, ω is the observation frequency, ωl is the
frequency of the l-th line, Sl = Psl is its integrated intensity
of (P is the NH3 pressure), Γl = Pγl and ∆l = Pδl are its width
and shift, and Yl = Pyl is its first order line-mixing parameter
(also called in the following the Rosenkranz parameter) related
to the off diagonal elements of the relaxation matrix W by14

Yl = 2

n,l

dn

dl

Wn,l

ωn − ωl
, (3)

where dl and dn are reduced matrix elements of the dipole
moment. Before going on, note that Eq. (3) has been
obtained within the Gordon’s conventions15 in the frame of
an unsymmetrized formalism while the formalism developed

0021-9606/2016/144(22)/224304/9/$30.00 144, 224304-1 Published by AIP Publishing.
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TABLE I. The most efficient matrix elements (in 10−3 cm−1 atm−1) coupling some R lines (denoted by l) to other
ones (denoted by n).

l = sR(3,1) l = aR(3,3) l = sR(1,0) l = sR(3,0)
n W̃n,l n W̃n,l n W̃n,l n W̃n,l

sR(2,1) −3.5 sR(3,3) −265.5 aR(0,0) −3.3 sR(1,0) −0.9
aR(2,1) −7.5 sR(4,3) −5 aR(2,0) −12.7 aR(2,0) −11
aR(3,1) −51 aR(4,3) −5.2 sR(3,0) −0.9 aR(4,0) −21
sR(4,1) −2.8 sR(5,0) −1.6
aR(4,1) −16.7

in Paper I1 is based on the Ben-Reuven’s conventions16 and
moreover uses a symmetrized formalism,2 therefore leading
to a different definition of the relaxation matrix (W̃ instead of
W ). The correspondence between the two formalisms detailed
in Ref. 2 (cf. Appendix A) is

Wn,l =


ρn
ρl

W̃n,l, (4)

where n≡ νf ε′f j ′f k
′
f ← νiε

′
i j
′
ik
′
i and l ≡ νf ε f j f k f ← νiεi jiki

are the two coupled lines and ρl is the relative population in
the initial level of line l (including its degeneracy).

The analysis of the imaginary part of W̃ , not detailed
here, has shown that, in general, its off-diagonal elements
are small or even negligible, which is a consequence of the
fact that the off-diagonal elements of S2,middle are purely real.
This is the reason why, in Eqs. (2)-(4) and in the following,
W̃n,l means in fact the real part of the relaxation matrix
element. Furthermore, a careful analysis of all the real parts
of the W̃ sub-matrices with k = 0, 1, . . . , 8 has shown that
inter-branch (P-R, P-Q, R-Q, . . . ) couplings are completely
negligible.

III. LINE COUPLING IN THE R BRANCH

In the first step, we analyze some characteristic situations.
Table I gives, for some specific lines, the most important
off-diagonal W̃n,l relaxation matrix elements.

Let us consider the sR(3,1) line first. As expected, the most
important coupling is with the doublet partner and the cou-
plings with the adjacent j doublets are weak. Figure 1 shows
the structure of the sub-matrix with k = 3 where the 12 R lines
are arranged as sR(3,3), aR(3,3); aR(4,3), sR(4,3); sR(5,3),
aR(5,3); aR(6,3), sR(6,3); sR(7,3), aR(7,3); aR(8,3), sR(8,3).
With this arrangement, the inter-doublet couplings allowed
by the leading dipole-dipole interaction are kept out from the
superdiagonal and subdiagonal elements of this sub-matrix.
For example, there are 11 superdiagonal elements: W̃1,2, W̃2,3,
W̃3,4, . . . , W̃11,12. Among them, there are 6 intra-doublet
couplings (i.e., W̃1,2, W̃3,4, . . . , W̃11,12) and 5 inter-doublet
couplings (i.e., W̃2,3, W̃4,5, . . . , W̃10,11). For the latter,
because the two lines of interest have the same inversion
symmetries, their couplings are not allowed by the dipole-
dipole interaction. Meanwhile, the allowed inter-doublet
couplings are W̃1,3, W̃2,4, W̃3,5, . . . and none of them are

FIG. 1. Off-diagonal elements of the
relaxation matrix elements Wn, l (10−3

cm−1 atm−1) in the sub-block with
k= 3 constructed by 12 R lines of NH3.
The 12 R lines are arranged as sR(3,3),
aR(3,3); aR(4,3), sR(4,3); sR(5,3),
aR(5,3); aR(6,3), sR(6,3); sR(7,3),
aR(7,3); aR(8,3), sR(8,3).
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TABLE II. First order mixing parameters yl (in atm−1). Experimental results
from Ref. 4. n/a: this line does not exist.

ys ya

Doublet Calc. Obs. Calc. Obs.

R(0,0) n/a 0 0.292

R(1,0) 0 −0.027 n/a
R(1,1) −0.167 −0.217 0.167 0.290

R(3,0) 0 0 n/a
R(3,1) −0.059 −0.214 0.059 −0.032
R(3,2) −0.178 −0.24 0.178 0.278
R(3,3) −0.297 −0.380 0.297 0.396

superdiagonal elements. As it appears clearly, here too, the
intra-doublet coupling is, by far, much stronger.

As another example, consider aR(3,3) and remind the
discussion on the magnitude of the off-diagonal elements
of S2,middle given in Sec. IV B of Paper I.1 In order to
identify significant couplings, two gaps must be checked: one
is the energy gap (

ωi′i+ω f ′f
2 + ωi′2i2

) and the other one is the
frequency gap (ω f i − ω f ′i′). For the intra-doublet coupling, the
frequency gap (as well as the average energy gap

ωi′i+ω f ′f
2 ) is

less than 2 cm−1 (the inversion splitting). Then, consider the
coupling between the aR(3,3) and the sR(4,3) lines. Now one
has ω f i − ω f ′i′ � 17 cm−1. As it appears from the discussion
about Fig. 3 of Paper I,1 such a value close to the upper limit in
ω′ of the F100100 (k, k ′,rc) function leads to a weak coupling.

Coming back to the intra-doublet coupling and to
the energy gap, among the three dipolar selection rules
∆ j2 = 0,±1, the ∆ j2 = 0 rule leads, for all j2 values, to very
significant values of the F100100 (k, k ′,rc) function, enhancing
(in conjunction with the strength factor discussed in Paper I1)
the intra-doublet coupling. We consider now the R(j,0) lines

TABLE III. Relaxation matrix elements (in 10−3 cm−1 atm−1) needed for the
simulation of the qR(3) manifold.

Doublet W̃n,l

sR(3,0) 0
R(3,1) −51
R(3,2) −155
R(3,3) −265

ν3 pP(2,2) −331
ν3 rQ(4,3) −263
ν3 rQ(5,3) −219

for which spin statistics eliminates the doublet partner. As
expected, from a similar discussion, Table I shows that the
couplings with the adjacent (in j) lines are weak.

Then, knowing the largest W̃n,l matrix elements, one can
calculate the Rosenkranz parameters from Eqs. (3) and (4).
They are given in Table II and compared with the values
deduced from experiments.4

The large experimental value for aR(0,0) may be a
consequence of a strong blending with the ν3 apP(7,7) line,
as noted by Pine and Markov.4 On average, the agreement
between measurements and theory is reasonable even if the
model seems to predict smaller values for the amplitude of the
Yl parameters. Note that for R lines, the calculation of Yl is very
simple, since each doublet can be reasonably considered as
“isolated” from the other ones, with Ys � −Ya (the subscripts
s and a represent here the symmetry of the initial level of the
doublet partners). In other words, the absorption coefficient
may be written as the sum over independent doublets. Then
it is possible to calculate the absorption coefficient in the
region of the ν1 R(3,K) manifolds directly from the Ws,a ≡ Wl

elements, as a sum of the well-known profiles resulting from
the coupling of two lines of equal intensity (Sl) and width
(Γl). Omitting the shifts for simplicity, this leads to5,6,14

FIG. 2. Line mixing in the R(3,k) manifold. P(NH3)= 50 Torr. Black curve: calculated transmittance. Red curve: experimental residual × 5 from Ref. 4. Blue
curve: theoretical residual × 5.
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α (ω) = S0

π

Γ0

(ω − ω0)2 + Γ2
0

+


doublets
l

2Sl
π

(Γl +Wl) �ω − Ω̄l

�2
+ (Γl −Wl)(Γ2

l
−W 2

l
+ Λ2

l
)

�
ω − Ω̄l

�2 − (Γ2
l
−W 2

l
+ Λ2

l
)2
+ 4Γ2

l

�
ω − Ω̄l

�2 , (5)

where Λl =
ωl,s−ωl,a

2 and Ω̄l =
ωl,s+ωl,a

2 , ωl,s and ωl,a being
the frequencies of the two components of each doublet. The
first contribution in Eq. (5) corresponds to the singlet sR(3,0).
Note that Eq. (5) is valid, whatever the degree of overlapping
of the lines, contrary to Eq. (2). For the calculations, the
intensities sl and wavenumbers ωl were taken from the
HITRAN database.17 The broadening coefficients γl have
been calculated in Paper I.1 The coupling parameters are
given in Table III.

A difficulty subsists: some ν3 band transitions, namely,
pP(2,2), rQ(4,3), and rQ(5,3) are centered in between
some ν1 R lines. These three doublets, which belong to
a perpendicular band cannot be analyzed in the frame of
the present model, which is limited to parallel bands. In
order to estimate the profile of these doublets, we have used
the following method: we have assumed that intra-doublet
coupling dominates. In this case, one has Ys � −Ya. This
relation is reasonably well verified by the experimental values
obtained by Pine and Markov.4 It was therefore possible to
deduce the matrix elements Wn,l from the experimental values
of Yl. They are also given in Table III. The result obtained
for the pP(2,2) doublets [−331 × 10−3 cm−1 atm−1] may be
compared with those deduced from other measurements in
the ν4 band [(−378 ± 49) × 10−3 cm−1 atm−1 from Ref. 7 and
(−277 ± 49) × 10−3 cm−1 atm−1 from Ref. 6].

Knowing all the parameters for the lines located in the
region of the ν1 R(3,k) manifold, two theoretical profiles
have been calculated, respectively, with and without the
inclusion of line mixing and their difference is compared
with the equivalent experimental residual. Figure 2 shows the
theoretical transmittance in the R(3,k) manifold region for a
cell length L = 5.8 cm and a pressure P(NH3) = 50 Torr,
which correspond to the conditions of the experiment.4

The two lowest curves compare the theoretical residuals
(i.e., differences between results derived with and without
considering LM) with the experimental ones. The agreement
is excellent since the present model succeeds at reproducing
most of the details of the residuals.

IV. LINE MIXING IN THE Q BRANCH

We now investigate the Q branch spectral region where
the close vicinity of transitions with different j generates much
more complicated line couplings. Following the approach of
Sec. III, we analyze the W̃l,k elements for some specific Q
doublets first and consider the Q(3,3) doublet (cf. Table IV).

As expected from the discussion of the strength factor
of the off-diagonal elements of S2,middle (cf. Sec. IV B of
Paper I1), in such a case where j = k, the intra-doublet
coupling is by far the most efficient. Note that our result for
the intra-doublet coupling is in good agreement with that
obtained by Cherkasov10 with a somewhat different model.

But there are also many situations for smaller values of k,
where the intra-doublet coupling is less efficient, leading
to a more complicated line coupling pattern. Figures 3 and
4 allow one to compare, for k = 1, the relaxation matrix
elements for intra-doublet coupling (Figure 3) to those for
inter-doublet coupling (Figure 4). In these two plots, the 16
Q lines are arranged as sQ(1,1), aQ(1,1); aQ(2,1), sQ(2,1);
sQ(3,1), aQ(3,1); aQ(4,1), sQ(4,1); sQ(5,1), aQ(5,1); aQ(6,1),
sQ(6,1); sQ(7,1), aQ(7,1); aQ(8,1), sQ(8,1). The reason to
select this arrangement is similar to that for the R lines.

As an example, consider the case of aQ(4,1) (cf. Table V).
The coupling with the doublet partner is no more dominant
since the most efficient coupling now is with the component of
the adjacent doublet of opposite parity sQ(5,1). Of course its
origin is the corresponding off-diagonal elements of S2,middle
coupling these two lines. As shown in Figure 5, the coupling
strength factor (Eq. (13) of Paper I1) for an intra-doublet
coupling decreases very quickly as j increases. Its value
decreases by a factor of 17 from j = 1 to j = 8. In contrast, the
coupling strength factor for an inter-doublet pair increases as
j increases and its value increases by 50% from j = 1 to j = 8.
For j = 4, the ratio of the coupling strength factor between the
inter- and intra-doublet couplings is 10.

Besides, for both the intra- and inter-couplings, the
frequency gaps are comparable (1.7 and 0.94 cm−1,
respectively). For the intra-doublet coupling, the average
energy gap

(ωi′i+ω f ′f )
2 is about −0.8 cm−1 (the inversion

splitting) while it is roughly equal to 19 × j ′i cm−1 � 95 cm−1

for the inter-doublet case. However, here too, the perturber’s
energy changes play a major role: while changes of states
with ∆ j2 = 0 are efficient for all j2 values in the intra-doublet
coupling, those with ∆ j2 = −1

(
ωi′2i2

� −2B j2 = −19 j2

)
will

partly compensate the average energy gap in the inter-doublet
case, at least for some pairs of perturber states with small,
but non-negligible populations (described by the weighting
factor of the summation over i2 and i′2 in Eq. (11) of
Paper I1) leading via smaller values of

ωi′i+ω f ′f
2 + ωi′2i2

, to
quasi-resonant collisions, i.e., to significant values of the
F100100 (k, k ′,rc) function.

This is illustrated by Table VI which gives, for
the most efficient perturber transitions, their frequencies
as well as the corresponding values of the

TABLE IV. The most efficient matrix elements (in 10−3 cm−1 atm−1) cou-
pling two Q lines (denoted by l) to other ones.

l = sQ(3,3) l = aQ(3,3)
n W̃n,l Cherkasov10 n W̃n,l Cherkasov10

aQ(3,3) −298 −302 sQ(3,3) −298 −302
sQ(4,3) −13.5 0 sQ(4,3) −22.5 0
aQ(4,3) −20.3 0 aQ(4,3) −13.4 0
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FIG. 3. The intra-doublet coupling. Re-
laxation matrix elements W̃n,l of Q
lines with k= 1.

F100100

(ωi′i+ω f ′f
2 + ωi′2i2

,ω f i − ω f ′i′
)

function (cf. Eq. (11)
of Paper I1). As shown in Fig. 3 of Paper I,1 for F100100
at rc = 5.5 Å, its maximum value of the two peaks located
at k = ±1.05 and k′ = 0 is around 2.8 and the value of
its center (i.e., k = 0 and k′ = 0) is around 2.4. Note that
at rc = 5.5 Å and T = 296 K, the conversion from ω (in
cm−1) to k (dimensionless) is k ≈ 0.12 × ω. Because some of
the perturber transitions almost completely compensate the
average energy gap, they can yield a maximum efficiency.

Then, one can conclude that in comparison with the
intra-doublet coupling, the strength factor enhances the inter-
doublet coupling and meanwhile, the energy gap reduces
it. A quantitative analysis has shown that the former is
dominating the later. As a result, the inter-doublet coupling
becomes larger than the intra-doublet coupling. This is
just what has been shown in Figs. 3 and 4. This also
appears in Fig. 6 where the corresponding differential
cross sections ≪ l

�
e−iS1(rc)−S2(rc)� n ≫ have been plotted as

FIG. 4. The inter-doublet coupling. Re-
laxation matrix elements W̃n,l of Q
lines with k= 1.
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TABLE V. The largest matrix elements (in 10−3 cm−1 atm−1) coupling two
Q lines (denoted by l) to other ones (denoted by n).

l = aQ(4,1) l = aQ(4,2)
n W̃n,l Cherkasov10 n W̃n,l Cherkasov10

sQ(3,1) −55 0 sQ(3,2) −37 0
aQ(3,1) −11.3 0 aQ(3,2) −17.4 0
sQ(4,1) −44.5 −62.7 sQ(4,2) −132.2 −150
sQ(5,1) −68.3 0 sQ(5,2) −51.6 0
aQ(5,1) −9.6 0 aQ(5,2) −18 0

FIG. 5. The coupling strength factors between two Q lines with inter-
doublets (i.e., sQ(j,1) and aQ(j+1,1)) and within intra-doublets (i.e., sQ(j,1)
and aQ(j,1)). They are plotted by red square and triangle, respectively. Mean-
while, DP matrices involved in the inter- and intra-doublet coupling are also
presented by blue plus and green cross.

TABLE VI. Some of the major quasi-resonant perturber contributions to the
off-diagonal elements of S2,middle coupling aQ(4,1) to sQ(5,1) for rc= 5.5 Å.

The averaged energy gap
(ωi′i+ω f ′f )

2 is 99.3 cm−1.

Pairs of bath state
j2 k2 ε2; j′2k

′
2ε
′
2 ωi′2i2 (cm−1) |k| |k′| Value of F100100

4 0 a; 3 0 s −80.06 2.889 0.145 1.588
5 0 s; 4 0 a −98.35 0.074 0.145 2.346
5 1 a; 4 1 s −99.72 0.138 0.145 2.352
5 1 s; 4 1 a −98.36 0.072 0.145 2.346
5 2 a; 4 2 s −99.79 0.148 0.145 2.353
5 2 s; 4 2 a −98.38 0.068 0.145 2.345
5 3 a; 4 3 s −99.90 0.164 0.145 2.355
5 3 s; 4 3 a −98.43 0.061 0.145 2.346
5 4 a; 4 4 s −100.05 0.188 0.145 2.359
5 4 s; 4 4 a −98.49 0.052 0.145 2.345
6 0 a; 5 0 s −119.25 3.142 0.145 1.326
6 3 a; 5 3 s −118.09 2.964 0.145 1.507
6 3 s; 5 3 a −119.46 3.175 0.145 1.294

function of rc. It also shows that line coupling is mainly
due to glancing collisions for which it is justified to limit
the potential to its long range (dipolar and quadrupolar)
components. In the present system, nearly head-on collisions
have much less important effect on line coupling in
comparison with other systems (without large dipole moment
and/or perturbers very different from the absorber.)

FIG. 6. Profile of <l |exp(−iS1(rc)−S2(rc))| n > vs rc. The red curve corre-
sponds to the coupling of aQ(4,1) and sQ(5,1) while the black one corre-
sponds to the coupling of aQ(4,1) and sQ(4,1). In addition, the weighting
factor of b db

drc
(in arbitrary units) is given by the blue curve (cf. Eq. (1)).

TABLE VII. First order mixing parameters yl (in atm−1). Experimental
results from Ref. 4.

s a

Q Present work Reference 4 Present work Reference 4

(1,1) −0.16 −0.292 0.134 0.277
(2,1) −0.17 0 0.196 0
(3,1) −0.17 0 0.237 0
(4,1) −0.224 0 0.248 0

(2,2) −0.31 −0.426 0.28 −0.41
(3,2) −0.26 0 0.3 0
(4,2) −0.255 0 0.314 0
(5,2) −0.27 0
(6,2) −0.284 0

(3,3) −0.37 −0.392 0.34 0.57
(4,3) −0.423 0 0.362 0.436
(5,3) −0.349 0 0.34 0
(6,3) −0.304 0
(7,3) −0.143 0
(8,3) −0.362 0

(4,4) −0.39 −0.51 0.37 0.52
(5,4) −0.356 0 0.392 0.53
(6,4) −0.354 0
(7,4) −0.212 0
(8,4) −0.154 0

(5,5) −0.4 −0.7 0.39 0.82
(6,5) −0.5 0
(7,5) −0.28 0
(8,5) −0.19 0

(6,6) −0.4 −0.29 0.405 0.892
(7,6) −0.464 0
(9,6) −0.4

(7,7) −0.4 −0.38
(8,7) −0.31 0

(8,8) −0.394 2.2
(9,8) −0.4 0
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The couplings with components of the same parity
(aQ(3,1) and aQ(5,1) in the case of aQ(4,1)) deserve a
comment. At the level of S2,middle, they are not allowed by the
dipole-dipole interaction but allowed by the quadrupole-dipole
and quadrupole-quadrupole components. A more detailed
analysis has shown that the corresponding relaxation matrix
elements result mainly from the dipole-dipole interaction
through the exponentialization of −iS1 − S2 (i.e., the basis
change introduced in the diagonalization procedure) and
therefore correspond to higher order effects (e.g., aqQ(4,1)
→ sqQ(4,1) → aqQ(3,1)).

A similar pattern is observed for aQ(4,2) (cf. Table V)
and contradicts the assumption made by Cherkasov10 that
collisional couplings of lines belonging to different j
levels can be always neglected. In other words, it is
not possible to consider the Q branch as a sum of
independent doublets. The next step to derive the Rosenkranz
parameters is a similar analysis by taking into account
all the efficient coupling elements for all the Q doublets.
Table VII gives the Yl parameters for all the Q lines with
significant intensities in the investigated spectral region.

Some particular cases should be discussed:
As mentioned just above, at low k values, the intra-doublet

coupling is not dominant and Table VIII shows that limiting
the calculation of the Yl to that mechanism may lead to wrong
parameters.

As shown by Eq. (3), the denominators in the expression
of Yl depend on the frequency detuning between the two
considered lines. At first sight, one may think that they
can be calculated from the values stored in the HITRAN
data base. Unfortunately, as is well known from previous
spectroscopic analyses,18,19 the rovibrational levels for v1 = 1

TABLE VIII. First order mixing parameters yl (in atm−1).

Line Only intra-doublet coupling All significant coupling

aQ(4,1) 0.053 0.248
sQ(4,2) −0.155 −0.255
aQ(4,2) 0.155 0.314
sQ(6,1) −0.031 −0.245
sQ(6,2) −0.097 −0.284

and j > 6 are affected by various and strong intramolecular
resonances. As a result, some lines have frequencies strongly
affected. This is the case for sQ(8,4), sQ(7,4), and sQ(7,3),
which are located at the same frequency in the data base
leading therefore to denominators equal to zero. As mentioned
above, the present theory neglects these resonances in the
expression of the basis eigenvectors. Therefore the same
assumption has to be made in the calculation of the
frequency detuning appearing in Eq. (3), then avoiding
any divergence. Note that this approximation will not
alter the final results since it concerns a few lines whose
intensities are only 1-3% of those of the most intense
lines.

Figure 7 shows the transmittance calculated with
the present model in the Q(j,k) region for P(NH3)
= 100 Torr and a comparison between the experimental4 and
theoretical residuals. Here again, the agreement is remarkable,
corroborating that the present model well reproduces all
the available observed signature of line mixing in the ν1
band.

However, as shown by Table VII, the set of theoret-
ical values of Yl is very different from that retrieved from

FIG. 7. Line mixing in the Q(j,k) branch. P(NH3)= 100 Torr. Black curve: calculated transmittance. Red curve: experimental residual × 3 from Ref. 4. Blue
curve: theoretical residual × 3.
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FIG. 8. Evolution with NH3 pressure of the qR(6,K) manifold in the pure
rotational band. The black curve is the absorption coefficient calculated
with line mixing effect. The red one gives the difference with a coefficient
calculated without line mixing.

experiment by Pine and Markov.4 We have no clear explana-
tion for that difference. One should think that it results from
the most sophisticated line shape model used by Pine and
Markov, which includes speed dependent broadening, Dicke
narrowing, and line mixing effects. However for the NH3
pressures considered in the present work, Dicke narrowing can
ignored. Moreover, a very little speed dependence is expected
for a dominant (and resonant) dipole-dipole interaction, as
corroborated by the measurements of Pine and Markov. An-
other possibility could be the fitting procedure used in Ref.
4: for such a great number of strongly overlapping lines, but
meanwhile with a weak overlapping of the coupled ones, it is
probable that the Rosenkranz parameters are strongly corre-
lated in the fits, leading to the determination of only “effective
parameters” through various compensating effects. We find
an indication in favor of this explanation in the “strange”
observed rotational dependence of the Yl. Most of the param-
eters are zero while a few of them have (too ?) large values
(cf. sQ(8,8)). Some results are not consistent, as it is the
case for Q(2,2). As shown in the discussion, provided that
intra-doublet couplings dominate, which is mainly the case
when j = k, one should have Ys � −Ya. For Q(2,2), the theory
gives Ys = −0.31; Ya = 0.28. Meanwhile the “experimental”
values are Ys = −0.43; Ya = −0.41. In order to go further, a
solution could be to impose some of the fitting parameters
to verify the symmetry relations established with the present
model.

V. CONCLUSION

In the present work, we have shown that the proposed
formalism of line mixing provides a very satisfactory
explanation of the experimental data. However a number of
questions remain opened, such as the origin of the differences
between the sets of experimental and theoretical mixing
parameters. This may be due to the sensitivity of the fitting
procedure under the experimental conditions of Ref. 4, where
the line mixing signature is weak. At higher pressures, the line
mixing effects should be much more important. Unfortunately,
the numerous Q lines will then merge into a single broad
feature without any rotational structure from which it will be
very difficult to retrieve line coupling parameters through a
multispectrum fit. In contrast, as shown in Ref. 6, a direct
observation of the intra-doublet coupling element is possible.
Closely spaced doublets exist, for instance in the pP branch
of the ν4 band, which remains rather well isolated from the
adjacent ones, even at relatively high densities. Therefore it
has been possible to measure the first significant set of Ws,a

elements, including their j and k dependence.6 However the
present formalism should be extended to perpendicular bands
before any comparison with these experiments can be made.
An intermediate situation exists, which had been proposed
in the pioneering work of Lightman and Ben-Reuven5 and
consists in looking at the qR(J) manifolds in the pure rotational
band. As is well known, all the j → j + 1 transitions with
different k values are close to each other and may overlap
with their corresponding inversion partner at the relevant
pressure region. Since intra-doublet coupling dominates in
such a case, each qR(j) manifold may be considered as a k = 0
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singlet with a Lorentzian shape and superimposed doublets,
one for each value of k , 0 with a line shape given by
Eq. (5). Fig. 8 gives the evolution with the NH3 pressure
of the theoretical line shape of the [qR(6,k), k = (0-6) ]
manifold illustrating the well-known merging of the inversion
doublets into singles lines.5,13 Although rather small optical
depths of NH3 are required to observe these profiles, one might
expect that an experimental study going from conditions where
transitions are neither well resolved nor completely degenerate
to a strong overlapping regime would provide a stringent test
of the present formalism. Finally, the formalism can easily be
applied to the interesting case of foreign gas broadening.
Indeed, as shown in Ref. 4, the experimental residuals
reveal that the collisional propensity rules driving the line
mixing processes likely differ strongly for self and foreign-gas
broadenings.
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